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Large Integral Points on Elliptic Curves 

By Don Zagier 

To ml, friend Dan Shanks 

Abstract. We describe several methods which permit one to search for big integral points on 
certain elliptic curves, i.e., for integral solutions (x, ,') of certain Diophantine equations of the 
form V2 = X3 + ax + b (a, b E Z) in a large range Ixi, Iy I < B, in time polynomial in 
loglogB. We also give a number of individual examples and of parametric families of 
examples of specific elliptic curves having a relatively large integral point. 

In this note we will discuss two questions: 
(i) given an elliptic curve E over Q, say in Weierstrass form y2 = X3 + ax + b 

(a, b E Z), how to search efficiently for large integral solutions (x, y), and 
(ii) how to construct elliptic curves which possess a large integral point. 
Problem (i) is usually handled by Skolem's p-adic method, or, in the case a = 0, 

by factoring y2 - b in Q(x/H) and applying results on linear forms in logarithms [6], 
[9]. We will describe three other methods. The first, which is certainly not new, 
works if the curve E has all its 2-torsion points defined over Q (i.e., if the cubic 
polynomial X3 + ax + b factors completely over Q). The second needs only one 
2-torsion point to be rational (i.e., x3 + ax + b = 0 should have at least one 
rational root) but requires knowing generators of the Mordell-Weil group E(Q). The 
third method makes no assumptions about the 2-torsion but again requires knowing 
a basis of E(Q). This method is known in principle and has been used for theoretical 
purposes, but not, apparently, as an algorithm for actually finding integral points. 
All three methods depend eventually on the fact that approximate solutions of the 
equations 

(1) ar-Ps = 0 or ar-/Ps y (r,s E Z) 

(a, /3, y given real numbers) can be found rapidly by continued fraction or related 
algorithms, and all three require a search time of the order of loglogB to find 
solutions with lxi, lyl < B. 

For question (ii) there seems to be no general procedure. We will describe some 
rather ad hoc methods and give a list of equations y2 = X3 + ax + b having fairly 
large integral solutions relative to the size of the coefficients a and b. 
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1. Searching for Large Integral Points. 
Method 1: Multiple Pell's Equations. If an elliptic curve over Q has all its 

2-torsion rational, it can be defined by an equation y2 = (x - al)(x - a2)(x - a3) 

with a, E Z, and Fermat descent leads to a finite list of triples (c1, C2, C3) such that 
any integral solution has the form x - a, = cn (i = 1,2,3) for some n, E Z. 
Combining any two of these equations gives a Pell-type equation cn y - c n; = 

a, - a, whose solutions belong to finitely many sequences of exponential growth, 
and this means that logx is exponentially close to a member of an arithmetic 
sequence { ar + 1I1r t N) with a, /3 E R. Combining any two of these formulas for 
logx gives an equation ar + /3 = a'r' + /3' + O(e-cr) (c > 0) of the form (1), and 
this can be solved in time roughly 0(log r) = 0(log log x). 

As an example we take the old chestnut: When is the sum of the first n squares a 
perfect square? This problem, often known as the "cannonball problem", because it 
appears in puzzle books (e.g., [5, #138]) in terms of stacking cannonballs into a 
square pyramid, has been solved long ago; the unique nontrivial solution 12 + 22 
+ +242 = 702 is connected with the construction of the Leech lattice [4] and 
hence has a certain importance in modern physics. The equation 12 + -+ - n 2 = M2 

can be written 6m2 = n(n + 1)(2n + 1), and an easy consideration shows that any 
solution has the form 

n = a2, n + 1 = 2b2, 2n + 1 = 3C2 

or 

(2) n = 6a2, n + 1 = b2, 2n + 1 = c2 

the two being exemplified by n = 1 and n = 24, respectively. We consider only (2). 
It leads to three Pell equations 

c2 - 12a2 = 1, c2 -2b =- 1, b2 - 6a2 =1 (a, b, c > 0) 
with solutions given by 

c + a 12 = (7 + 212)r, c + br2 = (1 + 7)', b + ar6 = (5 + 26)1 

(r,s,t > 0, s odd). 

Hence 

n (7 + ~4-8 )2r 2 + (7 - 48)2r2_ (1 + )2A - 6 + (1 - ) 

8 8 

(5 + 2)2t - 2+ (5 + 24)21 
4 

and 

logn = 2rlog(7 + v-4)- log8 + 0(1/n) 

(3) = 2s log (1 + 2)-log 8 + 0(1/n) 

- 2tlog(5 + 2) - log4 + 0(1/n ) 

with explicit 0( )-constants. Combining any two of these leads to an approximate 
equation of the form (1). The most convenient two are the first two, since the terms 
log 8 drop out and we are left with the homogeneous equation 

(4) rlog(7 + 48) - slog(1 + 2) = 0((7 + 48)2r). 
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Any solution of this would correspond to a very good rational approximation s/r 
(with s odd) of the real number 

= log(7 + 48) - 2.9884215191386608004806174839497371923153521213522... 
log(1 + 2) 

and could be recognized by a very large partial quotient in the continued fraction 
expansion of A. This expansion begins [2, 1, 85, 2, 1, 2, 1, 1, 1,... ]. The large partial 
quotient 85 at the beginning corresponds to the rational approximation 3/1 of X 

and the solution n = 24 of our original problem. Computing the expansion further 
to as many terms as justified by the above 50 digits of A, we find no further large 
partial quotients, and this shows that (4) has no solution under about 1025 and 
consequently (2) no further solution under about 10125 . This bound would be even 
larger if we had used a more accurate value of A, e.g., 101o' if we had 200 rather 
than 50 digits; the time needed for the computation (of the decimal and then of the 
continued fraction expansion of A) is negligible even on a modest computer. If we 
had taken a different pair of the equations (3) or were looking at a different 
example, then we would have had to look at an equation like (4) but with an extra 
additive constant, i.e., an equation like the second one in (1). A modification of the 
continued fraction algorithm permits one to solve such equations almost as fast as 
their homogeneous counterparts. 

Method 2: Pell's Equation and Canonical Height. Now suppose that our elliptic 
curve has only one rational 2-torsion point, but that its Mordell-Weil group is 
known. As an example, we take the curve 

(5) E: y2 = X3-30x + 133 = (x + 7)(X2 -7x + 19), 

which by inspection has the small integral solutions 

T= (-7,0), ?P = (6, 13), ?P + T= (2, +9), 2P =(-3, ?14) 

with 2T = 0. By descent one shows easily that E(Q) - Z ? Z/2Z with generators P 
and T (a 2-descent over Q can be carried out for any elliptic curve having at least 
one rational 2-torsion point; see [8, pp. 301-304]). If (x, y) is an integer solution of 
(5), then x + 7 is positive and the g.c.d. of x + 7 and x2 - 7x + 19 is a divisor of 
117=32 13, so x+7=da2, x2-7x+19=db2 for de {1,3,13,39}. The 
values d = 3 and d = 39 lead to a contradiction (if x2 - 7x + 19 = (x + 1)2 - 

9(x + 1) + 27 is divisible by an odd power of 3 then x + 1 0 mod9 and 
(x + 7)/3 cannot be a square or 13 times a square) and the value d = 1 to the 
factorizable equation (2b)2 - (2x - 7)2 = 27 whose only solutions with x + 7 a 
square are x = - 3, x = 2. We are left with 

x + 7 = 13a2, x -7x+19=13b2. 

The second of these equations can be written (2x - 7)2 - 52b2 = -27 and has the 
general solution 

2x -7 + b52 (?5 + 52)(649 + 90 &5)' or 

(?21 + 3 52)(649 + 90 52)'. 
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The solutions with -5 + 52 and +21 + 3 52 lead to x congruent to 1 or 5 
(mod 9), incompatible with x + 7 = 13a2. Also, from x -7 (mod 13) we find that 
I must be even, so in fact 

2x - 7 + b52= (5 + 52)(842401 + 116820 5-)r or 

(6) (-21 + 3 52)(842401 + 116820VS5i)r 

for some r, r' > 0. The values r = 0, r' = 0 lead to the small solutions x = 6 and 
x = - 7, while r = 1 leads to the "large" solution 

(7) (x,y) = (5143326, ?11664498677) (=?SP). 

But now we seem to have reached an impasse, for simply searching through small 
values of r and r' looking for x in (6) with (x + 7)/13 a perfect square would, first 
of all, require huge accuracy (since x grows very rapidly and one cannot use an 
approximate value of an integer to test whether it is a square), and also would be 
only exponentially rather than doubly exponentially fast (i.e., would require comput- 
ing time of the order of logx rather than loglogx). So we need a second condition 
on x to replace the second Pell's equation of Method 1. 

This second condition is provided by the canonical height function. We do not 
review the theory of the height (see, for instance, Chapter VIII of [8]), but only recall 
that it is a positive-definite quadratic form 

h: E(Q)/(torsion) -R+ 

which is effectively and rapidly computable (cf. [3] for an example of a high-accu- 
racy computation). Suppose we have a large solution (x, y) of (5) and write it as mP 
or mP + T with m E Z. Then, on the one hand, 

h((x, y)) = m2 h(P) 

since h is quadratic, and on the other hand, by the definition of the height, 

h((x, y)) = logx + c + O(1/x) 

with c and the O( )-constant effectively computable. (Again we refer to the above 
sources; observe that for an integral point on an elliptic curve one would in general 
have h((x, y)) = logx + c, + O(x-1) for one of a finite collection of constants cl, 
depending on congruence conditions on x modulo the various primes of bad 
reduction of the curve.) Combining these two formulas and our Pell-type equation 
(6) gives the pair of equations 

logx = ra + /3 + O(1/x) or r'a + P' + O(1/x) 

= m2h(P) - c + O(1/x) 

with 

a = log(842401 + 11682052), = log(5 + 52 )/2, 

/3' = log((-21 + 3 52)/2). 

If we now simply forget that m2 is a square and write s instead of m 2, we are left 
with a nonhomogeneous approximate linear equation, like the second one in (1), 
which again can be solved in roughly logarithmic time with respect to r or s and 
hence doubly logarithmic time with respect to x, with only moderate accuracy 
required. We omit the actual computational details since our third method will be 
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superior anyway. Observe that the present method would also work, though not 
quite as well, if the rank of E(Q) were larger than 1. If, for instance, E(Q) had two 
(known) generators P1 and P2, then the fact that the height is a quadratic form 
would mean that the height of an unknown large integral point (x, y) = m1Pj + 
m2P2 would be a quadratic form him, + h2mIm2 + h3m . If we then wrote s1, s2, 
and s3 for the three unknown integers m, m 1m2, and m 2 (thus forgetting that s1 
and s3 are squares and s5 = 

2 1s3), we would have an equation of the form 
ra + his1 + h2s2 + h3s3 + /3 0, i.e., like (1) but with more variables. This can be 
solved reasonably quickly by using the algorithm of [7] instead of continued 
fractions. 

Method 3: Group Law on E(R). The third method is based on the fact that the 
Mordell-Weil group E(Q) is a subgroup of E(R), which is isomorphic to the circle 
group R/Z or to two copies of the circle group. We need only consider the identity 
component E(R)0 of E(R) since in the Weierstrass model y2 = X3 + ax + b the 
other component, if there is one, is compact, and one can find all integral points on 
it by direct search. The isomorphism qp: E(R)0 -- R/Z is given explicitly by 

(8) x(P) =-+x (modi) 
x A/3 + -ax + b 

if P = (,,'q) with 'q > 0, and by qp(-P) = -q)(P) if 'q < 0; here, 

=2=2f dx 
Y /x3 + ax+b 

(y = largest real root of x3 + ax + b = 0) is the real period of E. 

P E(R) (P) R/Z 

Q; T (T)= 2 (0) =0 =1 

FIGURE 1 

As an example we again take the curve (5). Here E(Q) = (Pi T) with 2T = 0 and 
P = (6,13) of infinite order. If P' = (I, 'q) is a large integral solution of (5), then 

(P')= O(-1/2) by (8), the O( )-constant being known explicitly. On the other 
hand, P' = rP or rP + T for some r e Z, so p(P') r(P) or rp(P) + 2 (mod 1). 
Also, ( > e cr2 for some c > 0 by the height considerations discussed under "Method 
2," so (p(P') = O(e-cr2 /2). We thus have an approximate equation of the form 

(9) r- 2p(P) - s = O(e-cr2/2) (rs EZ) 

and this is an equation of the (easier, homogeneous) form (1) which can be solved as 
usual by a continued fraction algorithm, once we know .p(P) accurately. Numerical 
integration on a pocket calculator gives p(P) = 0.200041344203; this has the 
obvious rational approximation 1, corresponding to the large integral point (7), and 
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no other good approximations (in the sense of (9)) with numerator and denominator 
under around 106, showing that (5) has no further integral solution under about 
102.5X10", To go further, we need a more accurate value of cp(P). Numerical 
integration would work, but there are better ways. The denominator 2 in (8), a 
complete elliptic integral, can be calculated very rapidly by Gauss's arithmetic-geo- 
metric mean, and the method can be extended to cover also the incomplete elliptic 
integral in the numerator (Landen's transformation). This method is doubly ex- 
ponential, i.e., in n steps one gets about 2" digits of accuracy, but requires evaluating 
a transcendental function (see below). There is a simpler method which is only 
simply exponential but requires only elementary arithmetic operations. Namely, it is 
obvious from Eq. (8), or from Figure 1, that p(Q) E (0, 2) for a point Q with 
positive y-coordinate and p(Q) E ( 2, 1) if y(Q) < 0. Since p(2'Q) 2T(Q) 
(mod 1), we immediately obtain the binary expansion 

(10) 'P(P) a21+ a J I if y(2'P) < 0 

Since doubling a point on y2 = X3 + ax + b is given by the simple formula 

Q = (x, y) =2Q = (X2- 2x, X(3x - X2)- y) (X = (3x2 + a)/2y), 

this gives an easy way to compute T(P) one binary digit at a time. Taking 167 terms 
of (10) gives the 50-digit value 

qp(P) = 0.20004134420460575588311129477140424985602364831619, 

and this is enough (since its continued fraction has no very large partial quotients 
after the initial [0,4,1, 966, 1,... ]) to show that (5) has no further integral solutions 
after (7) under about 10150 . Again, we could push this bound up further in negligible 
computer time if we had more than 50 digits of accuracy available. If we used 
Landen's transformation mentioned above, then (10) would be replaced by a 
formula of the form 

(11) w(P) =yao + a( + + 0<+ arctan(bn) < g), 

where bn is a certain inductively computed algebraic number and r,, = O( ,2). 
Then 10 terms (rather than 167) would suffice to give the above 50-digit value of 

wp(P), and 12 (rather than 665) to give 200 digits. However, since the problem of 
computing (pP) is primarily one of accuracy, rather than time, anyway, this more 
complicated method is not worth applying and we omit the formulas for computing 

bn in (11). 
As in Method 2, we could deal with curves of rank > 1 by using the algorithm of 

[7] rather than the continued fraction algorithm. Also, it is perhaps worth noting that 
the function p is so easy to compute, using (10), that it is actually the most 
convenient way to look for small linear dependencies among rational or integral 
points on elliptic curves. For instance, the curve y2 = X3 + 17 of rank 2 has the 
integral points 

P1 = (-2,3), P2= (-1,4), P3= (2,5), P4 = (4,9), P5 = (8,23), 
P6 = (43,282), P7 (52,375), P8 = (5234, 378661) 
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(and their negatives). Using (10) we find 

Tp(PI) = .432771019602809..., (P2) = .379909003461601 ... 

p (P3) = .245451042667221..., cp(P4) = .187319976935588..., 

9(P ) = .134457960794380..., cp(P6) = .058131065731633..., 
p(P7) = .052862016141208..., q4(P8) = .005269049590425..., 

and looking for small linear dependencies (mod 1) by hand or by the algorithm of 
[7], we immediately find the representations of P3,..., P8 as 2P1 + P2, -P1 -P2, 
-2P1, 3P1 + 2P2, P1-P2, and 2P1 + 3P2, respectively, the work involved being 
probably less than that needed to actually carry out the additions on the elliptic 
curve. 

Remarks on Finding All Integral Points. We have described three methods, each of 
which is doubly exponential and in favorable circumstances permits one to find all 
integral points on an elliptic curve with coordinates up to a number of the order of 
101?'. The question naturally arises whether this, in combination with the known 
upper bounds on integral points given by Baker's results on linear forms in 
logarithms, suffices to ensure that all integral solutions of an equation y2 = X3 + ax 
+ b have been found. Unfortunately, although the bound given by Baker's method 
is only singly exponential in a polynomial in H = max{flal, Ibl}, the constants 
involved are so big that the bound is for all practical purposes actually triply 
exponential: Even for H = 10 the published result [1] 

max{ xl, IyI} < exp((10 6H) )106 

gives the upper bound lxi < 10100 , far bigger than the above 10101. However, 
recently better estimates have been obtained by Masser and WUstholz, based on 
analogues of Baker's bounds for elliptic rather than ordinary logarithms (cf. [8, pp. 
262-263]); here "elliptic logarithm" refers to the function A: E(R)0 -* R/Z dis- 
cussed under "Method 3" above. The best bound obtained (G. Wustholz, not yet 
published) has the form 

(p(r1P1 + ... ?rnPn) e- c(logr)"+l1oglogr (r =max r, 

where c is a computable constant depending on E and on PI,., Pn, whose value 
(not yet computed numerically) should be of the order of 1050 for n = 1 and E, P1 
of reasonable size. Together with the upper bound JI I < e- r2 discussed above, this 
should lead to a bound on r small enough to permit the determination of all integral 
points on E if the rank of E(Q) is small and its generators are known. 

2. Curves With Large Integral Points. We now turn to our second theme of finding 
examples of equations 

(12) y2 = x3 + ax + b (a,b e Z) 

which have large integral solutions. We must first decide what we mean by "large." 
If x is any positive integer and we take for y the nearest integer to x3/2, then 
Iy2 - X31 < x3/2 + 4 and we obtain a solution of (12) with IbI < x/2, lal s x1/2 4- 1. 
Since this works for all x, we want at least to require that a "large" solution have 
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a-0(xa), b = O(xA) with a < 2, f < 1. This forces us to choose y = (x3/2) 
(nearest integer to X 3/2), b = smallest residue (in absolute value) of y2 - X3 

(mod x), a = (y2 - X3 - b)/x in (12), i.e., everything is determined by x. Since the 
a priori ranges of a and b are O(x'/2) and O(x), respectively, the probability that a 
given x leads to a solution with a = 0(x ), b = 0(xA) is 0(xa?+-3/2 )I and we will 
expect infinitely many such examples if the sum of this over all x diverges, i.e., if 
af + fi > 4. In particular (specializing to a = 0, fi = 0, a = fi and 3a = 2fi, respec- 
tively), we can expect that for any - > 0 the four assertions 

y2 = X3+ b (xI y, b Z) X < b2+e ("Hall's conjecture"), 
y2 = X3+ ax (x,y,a EZ) - x < a2+=I 

y2 = X3+ ax + b (x,y,a,b E Z) = x < max{|ab, }bl 4E 

y2 = X3+ ax + b (x, y, a, b E Z) x < maxt(al /I lb|/3} 

hold with only finitely many exceptions but that each has infinitely many exceptions 
for - = 0. A reasonable measure of the impressiveness of a large integral solution 
seems to be the number 

(13) p = log(x)/log max{Ia/2, lbl/3}) 

(interpretation: x is of the order of the pth power of the roots of X3 + ax + b = 0); 
then asymptotically we would not expect to exceed p = 10 + - and would regard 
any value of p near 10 as worth recording. 

The above suggests an exhaustive way to find good solutions of (12): We simply 
try everyvaluex = 1, . . ., X, set y = ( X3/2), a =(y2X-1 - X2), b = y2 - X3 - ax 
and record (a, b, x, y) if p is large enough. This method of coming up with examples 
is admittedly like the one Borho [2] once likened to that of draining a section of a 
river dry and picking up the fish from the river bed, earning the scorn of all real 
fishermen; nevertheless, it gives us a start. We can make two slight improvements. 
First of all, if we write X = S2 + t with - s < t < s (every positive integer has a 
unique such representation), then by the binomial theorem X 3/2 equals S3 + 3St 

+ 3s-1t2 + E with Jll < .1, so we can compute y as (S3 + 3St + 3S-1t2) thus 
avoiding the nonelementary square root operation. Also, if we write 

(14) y S3 + t r = 4 

(rejecting the solution if r $ st (mod 2)), then 

(15) y2-X3 = 4 [s2(4sr - t2) + r2 + 6str] -t3, 

which involves only numbers of the order of X 3/2 rather than X3, so we can compute 
with modest accuracy. In this way we can fairly quickly find all solutions of (12) 
with a and b fairly small relative to x and x less than some chosen bound X. At my 
request, A. Odlyzko ran this algorithm on a Cray-1 up to X = 108 (running time: 4 
minutes), printing out all solutions with IaI < x1/4, IbI < x113. He found 117 
solutions in this range, of which 54 had the form a = +1 or +2 and b = 4 
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corresponding to the parametric solutions 

(x y) = (64n6 + 8n2, 512n9+ 96n5 + 3n), y2 = x x + n2, 

(x, y) = (4n6? 4n2, 8n9 _ 12n5 + 3n), Y2 = X3 
? 

2x + n2 

with n < 10, n < 17, respectively. Some of the best of the other 63 solutions are 
listed in Table 1, with the corresponding values of p (note that p = 9 + 0(1/log n) 
for the families (16)). The curve (1) in this table is the curve (5) used as an example in 
Section 1. Most of the curves in Odlyzko's table had a relatively large number of 
small integral points; only 8 (including the curves (h), (1), (m), and (p) of Table 1) 
had a rational 2-torsion point. 

TABLE 1 

Some large solutions of (12) 

a b X , p 

(a) -2 5 1,318 47,849 13.39 
(b) 4 - 1 4,321 284,038 12.08 
(c) 0 17 5,234 378,661 9.07 
(d) 11 4 16,833 2,183,948 8.12 
(e) - 13 37 60,721 14,962,645 8.59 
(f) - 12 - 10 80,327 22,766,293 9.09 
(g) -7 22 484,961 337,722,676 12.71 
(h) -9 28 764,396 668,309,460 12.20 
(i) - 13 4 1,056,517 1,085,962,264 10.82 
() - 19 - 51 2,955,980 5,082,205,677 10.12 
(k) - 24 124 4,435,710 9,342,104,422 9.53 
(1) - 30 133 5,143,326 11,664,498,677 9.09 

(m) - 37 60 11,975,623 41,442,617,124 9.03 
(n) - 23 - 33 17,454,557 72,922,784,957 10.64 
(o) - 16 49 19,103,002 83,493,454,805 12.09 
(p) 27 - 62 28,844,402 154,914,585,540 10.42 
(q) 37 18 64,039,202 512,470,496,030 9.96 
(r) 2 97 90,086,608 855,047,718,145 12.01 

We now try to construct families of curves with big solutions. The first idea is to 
choose x = S2 + t with 3t2 divisible by 4s, since this will give the best approxima- 
tion of r to 3t2/4s in (14). If 4sr = 3t2, then (15) reduces to y2- = xt3 + -r2, 

and this can be made near a multiple of x = S2 + t by choosing x t3 divisible by s 2. 

The conditions 4s13t2, 8s21t3 lead to s = Xn3, t = 2Xun2, r = 3Xu2n, and hence to 

(17) (x, y) = (X2n6 + 2Xun2, X3n9 + 3X2un5 + -Xu2n), 

2 = X3 +(U3)X +(4X2U4n2) 

with X, u, n E Z and (to ensure integrality) 2IXun. The best values are obtained with 
n large and X and u small. In particular, the values u = +1, X = 1, 2 give the 
families (16), and any fixed values of X and u lead to an infinite parametric family 
with p = 9 + o(1). We can modify the family (17) by adding a constant c to the 
formula x = X2n6 + 2Xun2; this leads after some calculation to 

x = X2n6 + 2Xun2 + c, 
(18) y = \In9 + 3X2un5 + 3X(U2 + cn2M) 

a = X~u - 3c , 

b = *X282n2 -CXU + 2cC3 
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with X, u, n, c E Z, 8 - 3cn2, and XAn = 0 (mod 2). For fixed values of c and 
8 the equation u2 - 3cn2 = 8 is a Pell's equation with (if any) infinitely many 
integral solutions, and we again get infinite families of examples with p = 9 + o(1). 
For instance, taking X = 8 = 1, we find for c = 2 and (n, u) = (20,49) the curve (q) 
of Table 1, while taking c= 4, 10, 1, and 6 and the smallest integer solution of 
u2- 3cn2 = 1 with n > 20 leads to the larger examples given in Table 2. 

TABLE 2 
Curves given by (18) with X = 1,8 = 1 

(s) v2 = x3 + 49x - 64, x = 482,042,404 l = 10,583,464,697,386 
(t) v2 = XA - 59x + 74, x = 7,257,247,018 v = 618,241,079,050,562 
(u) 2 = 3+ 94x + 689, x = 30,841,587,841 l = 5,416,329,712,145,492 
(v) V = X + 469x + 1594, x = 6,327,540,232,326 v = 15,916,675,888,150,694,092 

Next, we analyze some of the large solutions in Table I to see if they have a 
special form which can be generalized. The solutions in (b), (d), (i), (m), and (q) are 
of the form 3P for some P with small integral coordinates, those in (k) and (1) have 
the form 5P, and those of (h) and (r) have the form 2P + T where 2T = 0 (in fact, 
the solution in (h) has the form 4P + T with P = (-1,6) or (9, -26) and T = 
(-4, 0)). This suggests looking for parametric families of curves with integral points 
of one of these forms. We first need a small integral (or, in the case of 2 P + T, 
half-integral) point P on our curve. It is convenient to abandon the standard 
Weierstrass form and instead shift x by x(P), so that P = (0, n) for some n E Z, 
i.e., we take our curve in the form 

(19) E: y2 =x3 + 1x2 + mx + n2, P= (0,n) (l,m,n E Z). 

Then, by direct calculation, we have 

M2 n ~~~~6 mn2 
x(2P)= 2 -l, x(3P)= - +y 

( 
n3 

m 2k2(n4 + mk) 2 n3 m 2 

k 2n n(n 8+ mkn 4- 2k 3 ) \k 

where k = I(m2 - 41n2). Making 2P integral consists simply in requiring that 
m = 2nh in (19) for some integer h, but the corresponding value x(2P) = h2 _ / is 
not particularly big, corresponding to the fact that there are no cases of a point 2 P 
in Table 1. Making x(3P) integral and large can be done most easily by taking 
k = + 1 or, since only 8k need be integral, k = + , ? - or _ a, i.e., m 2 - 4n2 = 

+1, 2, + 4 or + 8. This has trivial solutions with = 0, m = +1 or + 2, leading 
to the families (16), and Pell-type solutions with / = 0 fixed and small, leading to the 
families (18). Thus, we get nothing new with this Ansatz. Of course, we may have 
kin2 (and hence 3P integral) for other values of k than + 1, + , ? 4 or +? (as 
mentioned, several of the large solutions found have the form 3P without belonging 
to the parametric family (18)), but it is not clear how to obtain infinite families of 
curves satisfying this. 

We next try to make 5P integral as in the curves (k), (1) of Table 1. The above 
formula for x(5P) is integral at k and n, so we need solutions of 

(20) n8 ? mkn4 - 2k3 1 2k2(n4+ 'Ik) 



LARGE INTEGRAL POINTS ON ELLIPTIC CURVES 435 

in integers n, 8k, m with 8k - m2 divisible by n2. It is not clear how to solve this 
parametrically in general. However, our test curves (k) and (1) have not only P and 
5P, but also 2P integral, i.e., 2nsm. Write m = 2nh and set p = / - h/2; then our 
curve becomes y2 = X3 + (h2 + p)x2 + (2nh)x + n2 and (20) reduces to 

(2n -- ph)2 + p2(p - h2) 1 n3p3(n - ph). 

This is still hard to solve in full generality, but we can get two classes of solutions by 
choosing either 

2n -ph = 0, p = h 2 + h' (0 < i 14) 

or 

p - h2 = 0, 2n - ph + 1. 

The first does not lead to particularly large x(5P), but the second gives 

2 h3 ? 124 
p = h n = +,2 1= 212, m = h4 + h, 

x = h14 + 2hll + h8 + 2h/s - 2h/2 

with x fairly large. To get n integral we take h odd; we also choose 31h so that 1 0 
(mod 3) and the equation (19) can be put into standard Weierstrass form without 
introducing denominators. This gives the two families 

x = h/4 T 2h/l + h8 + 2hs - 4h2 

(21) Y =i 21 +- 3h/8 + 3h15 + 2h12 - 5h9 2h 6+ W/3 +, 

y~x3?(/i?hi4 19/i6?F18/i?+27 
y2 = X3 +(- 3 + h~x + 108 (h/ 3 (mod6)) 

with p = 7 + o(1). For h = 3 they give the curves (k) and (1). 
Finally, we consider the case when 2P + T is integral for some P, where T is a 

rational 2-torsion point. This time we shift coordinates to make T = (0, 0), so our 
curve has an equation y2 = X3 + IX2 + mx. We assume that P has the form 

(q2, (N) with t integral and q2 = ~4 + 1/2 + m (this is the case for our examples (h) 
and (r), except that t has a denominator 2 which can be removed by resealing). 
Then x(2P) = ((4 m)/24,q)2 and x(2P + T) = m/x(2P). If we have 4 - m 
= ? 1, then x(2P) is the reciprocal of a large integer and x(2P + T) is integral and 
large. Both of our test curves are of this type with the + sign, so we choose 
m = 4- 1; then the condition on -q becomes q2 = (2(2 2 + 1) - 1. This leads to 

1= r-2 2, m = 4_4-1, x(2P + T)-4 2q2(24-1), 

where (-, ?q) is a solution of the Pell's equation q2 - r2= -1. We look for r such 
that this equation has a solution with ( of the order of r1/2; then I = 0(r), 
m = 0(r2), x(2P + T) = 0(r5) and our curve has p = 5 + o(1), the best that can 
be attained this way. We get some improvement by taking r 2 (mod 8) (then t and 
1 are odd and we can divide 1, m by 22 and 24) and r 2 (mod 3) (then 311 and we 
can put our curve into standard Weierstrass form without extra denominators). This 
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gives 

2 = 3 - r- 4r2 + 4 + 3 ? (r - 2 2)(2r2 - 8rt2 - 44 + 9) 
Y 48 1728 

(22) (x, y) = ((272(~4 1) + r - 2 i2 (71((4 - 1)(4r(6 - 4~4 - 2r2 + 1)) 

r 2 (mod 24), 2-rt2= -1. 

The values r = 2, (t, q) = (5, 7) and r = 74, (, 'q) = (5, 43) give the curves (h) and 
(p). The values r = 338, (I, Aq) = (13,239) give the curve (x) in Table 3 below; this 
curve is especially interesting because it has b = 0, but this never happens again with 
(22), since r = 2 2 leads to the equation _j2= 2 4- 1 whose only nontrivial 
solution is (13,239). Larger values of r give less impressive solutions (since the 
family (22) has only p = 5 + o(1)), but sometimes the coefficients a and b have the 
form lX2a1, X2pLb1 for some smaller integers X, la, a,, and b1, and then the curve 
can be put into the form [sy2 = Xx3 + a1x + b1 with smaller coefficients. In this 
way the values r = 218, 338, 5018, and 3170 (and (t, q) = smallest solution of 
712 = & _ 1) give the curves with large integral points shown in Table 3. 

TABLE 3 

Curves coming from Eq. (22) 

(w) 6y2 = 5x3 + 14x + 19, x = 50689092575 v = 10417923210092732 
(x) y2 = x3 - 1785x, x = 275702503440 Y = 144764163249358380 
(y) V2 = 95x3 + 93x - 946, x = 185532736100114 v = 24631600184311173563844 
(z) 3V2 = 143x3 - 9x + 9116, x = 147235975797220556 V = 390057200824630934517873420 
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